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Abstract
We consider Riemannian n-manifolds M with nontrivial κ-nullity “distribution” of the cur-
vature tensor R, namely, the variable rank distribution of tangent subspaces to M where R
coincides with the curvature tensor of a space of constant curvature κ (κ ∈ R) is nontrivial.
We obtain classification theorems under diferent additional assumptions, in terms of low
nullity/conullity, controlled scalar curvature or existence of quotients of finite volume. We
prove new results, but also revisit previous ones.

Mathematics Subject Classification 53C20 (Primary) · 53C25 · 53C30 · 22E25 (Secondary)

1 Introduction

Several important classes of Riemannian manifolds M are defined by imposing a certain
condition on its Riemann curvature tensor R, such as spaces of constant curvature, Einstein
manifolds, locally symmetric spaces, etc. In a somehow different sense, it is a stimulating
problem to define a class of Riemannian manifolds by imposing a certain form on their
curvature tensors. More specifically, let T be an algebraic curvature tensor. A Riemannian
manifold M is said to be modelled on T if its curvature tensor is, at each point, orthogonally
equivalent to T . Here the size of the orbit of T under the action of the orthogonal group plays
a certain role; for instance, curvature tensors of spaces of constant curvature are fixed points
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of that action, and in this case a manifold modelled on T will obviously also have constant
curvature. On the other hand, if T is only required to be the curvature tensor of a homogeneous
Riemannian manifold M̄ , there are continuous families of examples of complete irreducible
Riemannian manifolds M modelled on T which are not locally isometric to M̄ (see e.g. [24]
for examples and a discussion of related results, which originate from a question of Gromov).

If a RiemannianmanifoldM is modelled on an algebraic curvature tensor T , then clearly it
is also curvature homogeneous, in the sense that the curvature tensors at any two of its points
are orthogonally equivalent. The totality of curvature homogeneousmanifolds (for varying T )
obviously include locally homogeneous spaces, but contains strictly more manifolds. The
first examples were constructed by Takagi [41] and Sekigawa [36], in response to a question
by Singer (these were later generalized, see [3] for the full range of generalizations).

In a different vein, a Riemannian manifold is called semi-symmetric if its curvature tensor
is, at eachpoint, orthogonally equivalent to the curvature tensor of a symmetric space; the sym-
metric spacemaydependon the point (in particular a curvature homogeneous semi-symmetric
space is a Riemannian manifold modelled on the curvature tensor of a fixed symmetric
space). In 1968, Nomizu conjectured that every complete irreducible semi-symmetric space
of dimension greater than or equal to three would be locally symmetric. His conjecture was
refuted by Takagi [40] and Sekigawa [35], who constructed counterexamples (see [3] for
further developments). The complete classification of semi-symmetric spaces is the work of
Z. I. Szabó [39]. On the other hand, Florit and Ziller have shown that the Nomizu conjecture
holds for manifolds of finite volume [19].

It is remarkable what all of the examples above (and others) have in common, namely, their
curvature tensor has a large nullity. This leads us to the class of Riemannianmanifolds that we
consider herein; loosely speaking, we say a Riemannian manifold has non-trivial κ-nullity,
where κ ∈ R, if the variable rank tangent distribution where its curvature tensor behaves like
that of a space of constant curvature κ is non-trivial (as an extrinsic counterpart to the above
examples, recall that, owing to the Beez-Killing theorem, a locally deformable hypersurface
in a space form of curvature κ , without isotropic points, has precisely two nonzero principal
curvatures at each point, and hence has a κ-nullity distribution of codimension 2).

The idea of nullity was introduced in case κ = 0 by Chern and Kuiper in [11], and for
general κ by Otsuki [30], and later reformulated and studied by different authors (see e.g.
[20, 25] and, for more recent work, [14, 15, 19] and the references therein). Each sign of κ

(positive, negative or zero) yields results of a different flavor. In this paper we consider the
three cases, and note that the concept of nullity has connections with diverse areas such as
Sasakian manifolds, solvmanifolds, and non-holonomic geometry. Our main tool is the so
called splitting tensor (cf. section 2). We prove new results, but we also aim to extend, unify
and simplify existing results in the literature.

More precisely, let M be a connected Riemannian manifold, and consider the curvature
tensor R of its Levi-Civita connection ∇ with the sign convention

R(X , Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z ,

for vector fields X , Y , Z ∈ �(T M). For κ ∈ R, the κ-nullity distribution of M is the variable
rank distribution N κ on M defined for each p ∈ M by

N κ |p = {z ∈ TpM : Rp(x, y)z = −κ(〈x, z〉p y − 〈y, z〉px) for all x ,y ∈ TpM}.
The number νκ(p) := dimN κ |p is called the index of κ-nullity at p.

In case κ = 0 we obtain trivial examples of manifolds with positive ν0 simply by taking
a Riemannian product with an Euclidean space, but similar product examples do not occur

123



The κ-nullity of Riemannian manifolds and their splitting tensors

if κ �= 0. It is easily seen that νκ(p) is nonzero for at most one value of κ . For general M , νκ

is nonnecessarily constant if nonzero, but it is an upper semicontinuous function, so there is
an open and dense set of M where νκ is locally constant, and there is an open subset � of
M where νκ attains its minimum value. It is known thatN κ is an autoparallel distribution on
any open set where νκ is locally constant and, in case M is a complete Riemannian manifold,
its leaves in � are complete totally geodesic submanifolds of constant curvature κ [25].

We call the orthogonal complement ofNκ the κ-conullity distribution ofM , and its dimen-
sion at a point p ∈ M the index of κ-conullity at p, or simply, the κ-conullity at p. For obvious
reasons, the minimal nonzero value of the κ-conullity is 2. Riemannian manifolds with 0-
conullity at most 2 have pointwise the curvature tensor of an isometric product of Euclidean
space with a surface with constant curvature and hence are semi-symmetric. Conversely, a
complete irreducible semi-symmetric space is either locally symmetric or has 0-conullity at
most 2 in an open and dense subset [39].

In our study we apply a homothety and assume that κ is equal to +1, −1 or 0. Gener-
ally speaking, the results below give characterizations/classifications of manifolds in terms
of low conullity/nullity, controlled scalar curvature and/or existence of quotients of finite
volume. Some terminology: in general we shall say an n-manifold has minimal κ-nullity d
(resp. maximal κ-conullity n − d) to mean that νκ ≥ d everywhere and the equality holds at
some point.

1.1 Results with � = +1

The following theorem gives a lot of rigidity in the case of constant (+1)-conullity 2 and con-
stant scalar curvature. It should be compared with the examples constructed in [38] of certain

inhomogeneous conformal deformations of left-invariant metrics on SU (2), ˜SL(2, R), and
Nil3, which posses (+1)-conullity 2 and nonconstant scalar curvature.

Theorem 1.1 Let M be a simply-connected complete Riemannian n-manifold with constant
(+1)-conullity equal to 2, and constant scalar curvature. Then M is a 3-dimensional Sasakian

space form, that is, isometric to one of the Lie groups SU (2) (the Berger sphere), ˜SL(2, R)

(the universal covering of the unit tangent bundle of the real hyperbolic space), or Nil3 (the
Heisenberg group). In all cases, the (+1)-nullity distribution is orthogonal to the contact
distribution.

Corollary 1.1 A complete Riemannian manifold modelled on one of the left-invariant metrics
listed on Table 1 is locally isometric to the corresponding model.

Recall that a Sasakian space form is a Sasakianmanifold of constantϕ-sectional curvature,
where theϕ-sectional curvature plays the role accorded to the holomorphic sectional curvature
in Kähler geometry. We refer to [4] for a discussion of Sasakian geometry. In particular the
spaces in Theorem 1.1 have the structure of Lie groups and thus are homogeneous contact
metricmanifolds.A straightforward computation using [26] shows that the admissiblemetrics

with 1-conullity 2 are given as follows. The groups SU (2), ˜SL(2, R), Nil3 are unimodular,
so there is an orthonormal basis e1, e2, e3, where e1 is tangent to the 1-nullity and

[e1, e2] = λ3e3, [e2, e3] = λ1e1, [e3, e1] = λ2e2. (1.1)

By changing e1 to −e1, we may assume λ1 > 0, and then the possibilities for left-invariant
metrics are given in Table 1.
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According to Perrone [31], there is an additional, non-unimodular Lie group structure
on the Sasakian space form of ϕ-sectional curvature < −3, that is, the simply-connected
solvable Lie group with Lie algebra

[e1, e2] = αe2 + 2ξ, [e1, ξ ] = [e2, ξ ] = 0,

where α �= 0, ξ is the characteristic vector field and spans N 1, and e1, e2, ξ is orthonormal,

is isometric (but not isomorphic) to ˜SL(2, R) if α2 = −2θ .
Riemannian manifolds with non-trivial (+1)-nullity are also considered in [12, 29]

under different assumptions. As an application of the results in [29], the authors obtain
the classifĩcation of simply-connected complete Riemannian manifolds M with non-trivial
(+1)-nullity with the condition that M is the total space of a Riemannian submersion whose
fibers are the integral leaves of N 1; the cases of index of conullity 2 in [29, Table 3] cor-
respond to having the base of the Riemannian submersion to be two-dimensional. In [12]
is introduced a closely related class of Riemannian manifolds M , called n-Sasakian, which
means that M is foliated by totally geodesic equidistant n-manifolds such that the leaves are
contained in the (+1)-nullity of M (see [13, Definition 13]); some examples are provided,
coming from circle quotients of certain focal sets of isoparametric submanifolds in spheres,
and they in general have large (+1)-conullity.

1.2 Results with � = 0

The 3-dimensional case of the following theorem is proved in [1, Thm. 3], and a simple proof
in the case of arbitrary dimension is sketched in [19, Remark, p. 1324]. For the convenience
of the reader, we provide an alternate, and as well simple, argument in subsection 3.2.

Theorem 1.2 Let M be a simply-connected complete Riemannian n-manifold with maximal
0-conullity 2. Assume the scalar curvature function scal is positive and bounded away from
zero. Then M splits as the Riemannian product R

n−2 × �, where � is diffeomorphic to the
2-sphere.

The splitting in Theorem 1.2 ceases to be true if scal attains negative values, as the
examples constructed by Sekigawa [36] show. Recently, a complete description of themetrics
on complete simply-connected locally irreducible 3-manifolds with constant 0-nullity 1 and
constant negative scalar curvature, as well as the topology of their quotients in case the
fundamental group is finitely generated, has been obtained [8]. In view of Theorem 1.2 and
[7, Thm. 1], the following question seems interesting:

Question 1.1 Is there a simply-connected complete irreducible Riemannian n-manifold with
constant 0-conullity 2 and nonnegative sectional curvature?

Table 1 Left-invariant Riemannian metrics on 3-dimensional Lie groups with nontrivial (+1)-nullity

λ1 λ2 λ3 M scal ϕ-sect curv Condition

θ + 1/θ θ 1/θ SU(2) 2 −1 θ >0

SU(2) θ >0

2 θ θ ˜SL(2, R) −2+4θ −3+2θ θ < 0

Nil3 θ=0
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Table 2 Left-invariant
Riemannian metrics on
3-dimensional Lie groups with
nontrivial (−1)-nullity

λ1 λ2 λ3 M scal KD Condition

θ − 1/θ −1/θ θ ˜SL(2, R) −2 1 0< θ <1

E(1,1) θ =1

In [7, Thm. 3] it was claimed that complete 4-manifolds with 0-nullity 1, non-zero splitting
tensor, and finite volume do not exist. Whereas we believe this statement to be true, we found
a fatal slip in the calculations in the proof. To compare, in dimension one higher we show:

Theorem 1.3 There exists a compact irreducible locally homogeneous Riemannian 5-
manifold with 0-nullity 1.

The manifold in Theorem 1.3 is in fact an almost Abelian Lie group. The idea of con-
struction follows the example in [14, §9]. Other examples of compact locally homogeneous
spaces with non-trivial nullity are given in [15].

1.3 Results with � = −1

In the 3-dimensional case, the following result is closely related to [37, Thm. 1.1].

Theorem 1.4 Let M be a Riemannian n-manifold (n ≥ 3) with maximal (−1)-conullity 2.

(a) If the scalar curvature is constant and D = N⊥−1 is integrable on an open subset U
of (−1)-conullity 2 then U is locally isometric to the group of ridig motions of the
Minkowski plane, E(1, 1) = SO0(1, 1) � R

2, with a left-invariant metric.
(b) Assume M is complete and has finite volume. Assume, in addition, that either n = 3

or the scalar curvature is bounded away from −n(n − 1) (that is |scal + n(n − 1)| is
bounded away from zero). Then the universal covering of M is homogeneous.

(c) If M is homogeneous and simply-connected, then M is isometric to E(1, 1) or ˜SL(2, R)

with a left-invariant metric.

The left-invariant metrics in Theorem 1.4(c) can also be described following [26]. The
groups listed are unimodular and we use the above notation to write (1.1). By switching
e2 and e3, and changing e2 to its opposite, if necessary, we may assume 0 < λ3 ≤ 1, and
then the possibilities are given in Table 2 (KD denotes the sectional curvature of the 2-plane
orthogonal to N−1).

Note that SL(2, R) and E(1, 1) are both modelled on the same algebraic curvature tensor.
The following theorem deals with a situation of least non-trivial nullity. We may assume

n ≥ 4 as the case n = 3 is covered by Theorem 1.4.

Theorem 1.5 Let M be a complete Riemannian n-manifold (n ≥ 4) with constant (−1)-
nullity 1 and finite volume. Then n is odd and the universal Riemannian covering of M is
isometric to the solvable (almost-Abelian, unimodular) Lie group G = R�R

m (m = n−1),
where R

m is Abelian, and the adjoint action of a certain element of R on R
m is given in an

orthonormal basis by the matrix
(

Im/2 0
0 −Im/2

)

According to formulae (4.17) below, if we replace the matrix in the statement of Theo-

rem 1.5 by
(

Ik 0
0 −Im−k

)
, where k = 1, . . . ,m − 1, we get a homogeneous (hence complete)

Riemannian n-manifold R � R
m with constant (−1)-nullity 1, but it will not have quotients

of finite volume, as it will not be unimodular, unless k = m/2.
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1.4 Complete non-integrability of the conullity distribution

In the last part of this work, we give a simpler and unified proof of the following results due
to Vittone [43] and Di Scala, Olmos and Vittone [14].

Theorem 1.6 Let M be either:

(a) a connected complete Riemannian manifold of with nonzero constant index of κ-nullity,
where κ > 0; or

(b) a connected simply-connected irreducible homogeneous Riemannian manifold with
nonzero index of 0-nullity.

Then any two points of M can be joined by a piecewise smooth curve which is orthogonal to
the distribution of κ-nullity at smooth points.

Wewish to thankWolfgang Ziller for helpful comments and the referee for valuable advice
and for calling to our attention the papers [12, 29].

2 Preliminaries

The splitting tensor of the nullity distribution was introduced by Rosenthal in [32] under the
name ’conullity operator’; it plays a key role in this work. Let M be a connected Riemannian
manifold, and letD be a smooth distribution on M . Consider the orthogonal splitting T M =
D ⊕ D⊥. It will be convenient to call the D-component (resp. D⊥-component) of tangent
vectors the horizontal (resp. vertical) component, and, for a vector field X ∈ �(T M), we
shall write X = Xh + Xv . Now we can define the splitting tensor of D⊥ as the map

C : �(D⊥) × �(D) → �(D)

given by

C(T , X) = −(∇X T )h = CT X

(see [16, p. 186]). It is clear that C is C∞(M)-linear in each variable. Note that in case D is
integrable, C is nothing but the shape operator of the leaves; further, this is the case if and
only if CTp : D p → D p is a symmetric endomorphism for all T ∈ �(D⊥) and all p ∈ M ,
since

〈CT X , Y 〉 − 〈X ,CT Y 〉 = −〈∇XT , Y 〉 + 〈X ,∇Y T 〉
= 〈T ,∇XY 〉 − 〈∇Y X , T 〉
= 〈T , [X , Y ]〉,

(2.2)

for all X , Y ∈ �(D). Of course, C vanishes identically if and only if D is autoparallel.
In the remainder of this section, we assume that νκ(p) > 0 for some κ ∈ R and for all

p ∈ M , and we let � ⊂ N κ be a nontrivial autoparallel distribution. In [33, Lem., p. 474]
the following Ricatti-type ODE for the splitting tensor is used (see also [17, Lem. 1]).

Proposition 2.1 The splitting tensor C of � satisfies

∇T CS = CSCT + C∇T S + κ 〈T , S〉 I (2.3)
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for all S, T ∈ �(�). In particular, the operator Cγ ′ , along a unit speed geodesic γ in a leaf
of �, satisfies

(Cγ ′)′ = C2
γ ′ + κ I , (2.4)

where the prime denotes covariant differentiation along γ .

In general, we shall use the name κ-nullity geodesic to refer to a geodesic contained in a
leaf of κ-nullity.

Following the ideas of [10], we can provide an explicit solution of equation (2.4).

Proposition 2.2 Let γ : [0, b) → M be a nontrivial unit speed geodesic with p = γ (0)
and γ ′(0) ∈ �p so that γ is a geodesic of the leaf of � through p. Assume that γ ([0, b)) is
contained in an open subset of M where νκ is constant. Then the splitting tensorCγ ′(t) = C(t)
of � at γ (t) is given, in a parallel frame along γ , by

C(t) = −J ′
0(t)J0(t)

−1, (2.5)

where

J0(t) =

⎧⎪⎪⎨
⎪⎪⎩

cos(
√

κt)I − sin(
√

κt)√
κ

C0 if κ > 0,

cosh(
√−κt)I − sinh(

√−κt)√−κ
C0 if κ < 0,

I − tC0 if κ = 0,

(2.6)

and C0 = C(0). In particular J0(t) is invertible for t ∈ [0, b).
Proof The formula (2.5) is obtained by integration of (2.4). To see that J0(t) is invertible
for t ∈ [0, b), note that J0 is the solution of the Jacobi equation J ′′ + κ J = 0, and so is
the vector field U along γ given by the solution of U ′ + C(t)U = 0 with initial condition
U (0) = I . Note that J0 and U have the same initial conditions at t = 0, so they coincide.
On the other hand, U satisfies a first order differential equation from which one easily sees
that kerU is parallel along γ . It follows that J0(t) = U (t) is invertible for t ∈ [0, b). ��

Recall that the maximum number of linearly independent smooth vector fields on Sm−1

is given by ρ(m) − 1, where ρ(m) is the mth Radon-Hurwitz number, defined as 2c + 8d ,
wherem = (odd)2c+4d for d ≥ 0 and 0 ≤ c ≤ 3. The invertibility of J0(t) in Proposition 2.2
implies:

Corollary 2.1 Let γ : [0, b) → M be as in Proposition 2.2, where b = ∞.

(a) If κ > 0, then the splitting tensor Cγ ′ has no real eigenvalues. It follows that ρ(n−d) ≥
d + 1, where n = dim M and d = dim�

(b) If κ ≤ 0, then any real eigenvalue λ of Cγ ′ satisfies |λ| ≤ √−κ .

Proof The assertion about the Radon-Hurwitz number in (a) goes as follows (cf. [17,
Thm. 1]). Fix an orthonormal basis T1, . . . , Td of �. For every unit X ∈ �⊥, the list X ,
CT1X , . . . ,CTd X must be linearly independent, for otherwise CT would have a real eigen-
value for some T ∈ �. Now CT1X , . . . ,CTd X projects to a global frame on the unit sphere
of �⊥. ��

Recall that a smooth distribution D on M is called bracket-generating if the iterated Lie
brackets of smooth sections ofD eventually span the whole T M . More precisely, we identify
D with its sheaf of smooth local sections, and define D1 = D and

Dr+1 = Dr + [D,Dr ] = [D,Dr ] (2.7)
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for r ≥ 1, where

[D,Dr ] = {[X , Y ] : X ∈ D, Y ∈ Dr }.
Note that Dr for r ≥ 2 in general has variable rank. We say that D is bracket-generating of
step r if, for some r ≥ 2, we have Dr = T M and r is the minimal integer satisfying this
condition.

Corollary 2.2 If M is complete,κ > 0and νκ is constant, thenD := N⊥
κ is bracket-generating

of step 2.

Proof The calculation (2.2) shows that CTp is symmetric for Tp ⊥ D2
p and p ∈ M , and thus

has all eigenvalues real. Now Corollary 2.1 implies Tp = 0. ��
Remark 2.1 The above arguments also easily imply Theorem 4 in [34], which states that for
a compact 2n + 1-dimensional Sasakian manifold M with constant νκ > 0 for some κ > 0
either νκ ≤ n or M has constant curvature κ . Indeed, assume M has not constant curvature
and apply Corollary 2.1(a) to it to obtain

ρ(2n + 1 − νκ) ≥ νκ + 1.

Now the desired result immediately follows from the trivial estimate m ≥ ρ(m) for all m.

The case κ = 0 of (2.9) below can be found in [6, ch. 4, §4.1].

Lemma 2.1 Let γ : [0, b) → M with γ ′ = T ∈ � be as in Proposition 2.2. Denote the
scalar curvature of M by scal, and put n = dim M and d = dim�. Then

1

2

d

dt
scal = −κ(n − d − 1)trCT +

∑
i �= j

〈R(CT Xi , X j )X j , Xi 〉, (2.8)

where {Xi }n−d
i=1 is a parallel orthonormal frame of �⊥ along γ .

In particular, in case � = Nκ , and νκ = n − 2 along γ , we have

1

2

d

dt
scal = trCT (KD − κ), (2.9)

where KD denotes the sectional curvature of the 2-plane distribution D = N⊥.
Further, if in addition scal is constant, then trCT = 0 and detCT = κ along γ .

Proof Let {T = T1, T2, . . . , Td} be an orthonormal frame of � which is parallel along γ .
We compute

scal =
∑
i �= j

〈R(Ti , Tj )Tj , Ti 〉 +
∑
i, j

〈R(Xi , Tj )Tj , Xi 〉 +
∑
i �= j

〈R(Xi , X j )X j , Xi 〉.

Since the first two sums on the right-hand side are constant along γ , we get

d

dt
scal =

∑
i �= j

〈∇T R(Xi , X j )X j , Xi 〉

= −
∑
i �= j

〈∇Xi R(X j , T )X j , Xi 〉 + 〈∇X j R(T , Xi )X j , Xi 〉

= −2
∑
i �= j

〈∇X j R(T , Xi )X j , Xi 〉, (2.10)
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where we have used the Bianchi identity and other symmetries of R.
Next, since T ∈ Nκ , we can write

∇X j R(T , Xi )X j = −∇X j (κ(T ∧ Xi )X j ) − R(∇X j T , Xi )X j

+ κ(T ∧ ∇X j Xi )X j + κ(T ∧ Xi )∇X j X j

= κ〈CT X j , X j 〉Xi + R(CT X j , Xi )X j .

Substituting into (2.10) yields (2.8).
In case d = νκ = n − 2 we have

〈R(CT X1, X2)X2, X1〉 + 〈R(CT X2, X1)X1, X2)〉 = 〈R(X1, X2)X2,CT X1〉
+ 〈R(X2, X1)X1,CT X2〉

= (trCT )KD,

and (2.9) follows.
Since νκ = n − 2 along γ , we have KD �= κ along γ . Therefore, in case scal is con-

stant, equation (2.9) yields trCT = 0 along γ . Finally, take the trace in (2.4) and use the
characteristic polynomial C2

T + (detCT )I = 0 to obtain detCT = κ along γ . ��

Lemma 2.2 Assume κ ≤ 0, γ is a complete κ-nullity geodesic, νκ = n − 2 and KD is
bounded away from κ along γ . Then trC(t) = 0 and detC(t) = κ for all t ∈ R, where
C(t) = Cγ ′(t).

Proof Note that 1
2 scal = KD + mκ , where m = n2−n

2 − 1. Using equations (2.5), (2.9) and
Jacobi’s formula, we obtain

d

dt
(KD − κ) = tr(−J ′

0 J
−1
0 )(KD − κ)

= −
d
dt det J0
det J0

(KD − κ).

Integration of this equation yields

KD(t) − κ = (KD(0) − κ)| det J0(t)|−1.

Now det J0(t) equals

1 − (trC0)t + (detC0)t
2

where C0 = C(0), if κ = 0, and

1

2

(
1 + detC0

κ

)
+ 1

4

(
1 − detC0

κ
− trC0√−κ

)
e2t + 1

4

(
1 − detC0

κ
+ trC0√−κ

)
e−2t

if κ < 0. Since KD is bounded away from κ , and the initial point is arbitrary along γ , the
desired result follows. ��

Lemma 2.3 Let M be a complete Riemannian n-manifold of finite volume and minimal (−1)-
nullity 1. Then div T = 0, where T is a unit vector field, tangent to the nullity, defined in the
open set of minimal nullity.
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Proof Let γ be an integral curve of T , a complete unit speed (−1)-nullity geodesic, and put
C(t) := Cγ ′(t). According to (2.5),

C(t) = (− sinh t I + cosh tC0)(cosh t I − sinh tC0)
−1, (2.11)

where C0 = C(0). Now Jacobi’s formula yields

trC(t) = −
d
dt det(cosh t I − sinh tC0)

det(cosh t I − sinh tC0)

= − P(ξ)

Q(ξ)
,

where ξ = tanh t and

P(ξ) =
m∑
j=0

(−1) j [(m − j)ξ j+1 + jξ j−1]σ j ,

and

Q(ξ) =
m∑
j=0

(−1) jξ jσ j ;

here m = n − 1 and σ j = σ j (C0) denotes the j-symmetric function of the eigenvalues of
C0. Note that Q is nothing but the characteristic polynomial of C0.

In order to compute the limits of trC(t) as t �→ ±∞, note that if Q(1) = Q′(1) = · · · =
Q(k−1)(1) = 0 for some k = 0, . . . ,m, then the alternate sums

m∑
j=0

(−1) jσ j =
m∑
j=0

(−1) j jσ j = · · · =
m∑
j=0

(−1) j j k−1σ j = 0.

Therefore

P(k)(1) =
m∑
j=0

(−1) j j( j − 1) · · · ( j − k + 2)[(m − 2k) j + m + k2 − k]σ j

=
m∑
j=0

(−1) j j( j − 1) · · · ( j − k + 2)(m − 2k) jσ j

= (m − 2k)
m∑
j=0

(−1) j j( j − 1) · · · ( j − k + 2)( j − k + 1)σ j

= (m − 2k)Q(k)(1),

and L’ Hôpital rule yields

lim
t→+∞ trC(t) = lim

ξ→1
− P(ξ)

Q(ξ)
= −(m − 2k).

In a similar vein, if −1 is a root of multiplicity k of the polynomial Q, we compute that
limt→−∞ trC(t) = m − 2k.

Next, we use the above calculation to prove the following claim: the eigenvalues of C0

are −1 and +1, each with multiplicity m/2. In particular, m is even and the divergence
div T = tr∇T = −trCT = 0 everywhere.
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Suppose the claim is not true at p ∈ M . Let γ : R → M be a nullity geodesic with
γ (0) = p, C(t) := Cγ ′(t). Now

lim
t→+∞ trC(t) = −(m − 2k+), lim

t→−∞ trC(t) = m − 2k−,

where k± is themultiplicity of±1 as an eigenvalue ofC0. If k+ < m/2 then limt→+∞ div T =
m − 2k+ > 0. Since k+ is an upper semicontinuous function, we have m − 2k+ > 0 on a
neighborhood of p in M . Nowwe can find a (compact)m-disk transversal toN−1, containing
p in its interior, and t0, L > 0 such that div T |γx (t) > L for all t ≥ t0 and x ∈ D; here γx
denotes the nullity geodesic with γx (0) = x , γ ′

x (0) = Tx . Put

U (t) := {γx (s) | x ∈ D, s ≥ t}, vs := vol(U (t0 + s)).

Note that vs > 0 since U (t) has non-empty interior, and vs < ∞ by our assumption. For
0 ≤ s1 < s2 we have U (t0 + s2) ⊂ U (t0 + s1) and thus vs2 ≤ vs1 . On the other hand, the
Divergence Theorem and the First Variation of Volume imply

d

ds
vs =

∫

U (t0+s)
div T > 0,

a contradiction. This proves that k+ ≥ m/2.
If k− < m/2, we replace T by −T , so that C0 is replaced by −C0 and k+ and k−

are interchanged. Now k+ < m/2 and the argument above leads to a contradiction. Hence
k− ≥ m/2. Since k+ + k− ≤ m, we finally deduce that k+ = k− = m/2.

��

3 Manifolds with �-conullity 2

In this section, we obtain results in case M has maximal κ-conullity 2.

3.1 The case � = 1

We now prove Theorem 1.1. Note that, owing to Corollary 2.1(a), 2 ≥ ρ(2) ≥ (n − 2) + 1,
so n = 3 and ν1 = 1.

For any T ∈ N 1, CT is a 2 × 2 real matrix without real eigenvalues, again by Corol-
lary 2.1(a), thus with a pair of complex conjugate eigenvalues. Moreover Lemma 2.1 says
trCT = 0 and detCT = 1 if ||T || = 1, so that the eigenvalues of CT must be ±i . Since
C2
T = −I , equation (2.4) implies that Cγ ′ is constant along a unit speed nullity geodesic

γ with respect to any parallel orthonormal frame of D := N⊥
1 , therefore we can write

CT = (
0 −1
1 0

)
, for T = γ ′, with respect to a parallel orthonormal frame of D along γ .

Since CT is skew-symmetric, the distribution D is non-integrable. A nowhere integrable
rank 2 distribution in a 3-manifold must be a contact distribution. For X ∈ D, we have

〈LT X , T 〉 = 〈−∇XT , T 〉 = −1

2
X · ||T ||2 = 0.

Now the flow of T preservesD, so T is the Reeb (or characteristic) vector field ofD [4, § 3.1].
Further, ∇T = −CT is skew-symmetric, so T is a Killing field. This says M is a K -contact
distribution [4, § 6.2], which in dimension 3 is equivalent to Sasakian [4, Cor. 6.5].

A 3-dimensional Sasakian manifold with constant scalar curvature is locally ϕ-symmetric
[44, Thm. 4.1]. Since M is assumed complete and simply-connected, it is a globally ϕ-
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symmetric space [42, Thm. 6.2]. By the classification of Sasakian globally ϕ-symmetric
spaces in dimension 3 [9, Thm. 11], we finally deduce that M is a Sasakian space form, that
is, those listed in the statement of Theorem 1.1.

3.2 The case � = 0

Now we deal with Theorem 1.2.
Since scal �= 0 everywhere, the conullity equals 2 everywhere. For each p ∈ M , consider

the linear map Cp : N 0|p → M(2, R). Lemma 2.2 says that trCS = 0 and detCS = 0
for S ∈ N 0, so the image of Cp is at most one-dimensional. Let U be the set of points
p ∈ M such that Cp �= 0. On U we choose a unit vector field T ∈ N 0 spanning the
orthogonal complement to kerC inN 0. It follows from equation (2.3) that ∇T S ∈ kerC for
all S ∈ kerC . Therefore ∇T T = 0.

Since detCT = 0 and the real eigenvalues ofCT can only be zero, due to Corollary 2.1(b),
the endomorphism CT is nilpotent. Now for each p ∈ U we can find an orthonormal basis
X p , Yp of D p = N⊥

0 |p such that CT X |p = 0 and CT Y |p = a(p)X p for some a(p) �= 0;
on a connected component of U , we may assume a(p) > 0 for all p. Also, it follows from
equation (2.4) that X and Y can be taken parallel along a nullity geodesic, and then also the
function a is constant along γ . By passing to the Riemannian universal covering of U , if
necessary, we may define the orthonormal frame X , Y of D globally. Now the Levi-Civita
connection satisfies:

∇T T = ∇T X = ∇T Y = 0,

∇XT = (∇XT )v ⊥ T , ∇Y T = −aX + (∇Y T )v,

∇X X = αY , ∇Y Y = βX , ∇XY = −αX , ∇Y X = −βY + aT ,

for some smooth functions α, β on U . We compute that

R(X , Y )X = (X(a) − aβ)T + (α2 + β2 − X(β) − Y (α))Y + a(∇XT )v,

and

R(Y , X)Y = −aαT + (α2 + β2 − X(β) − Y (α))X .

From T ∈ N 0 we deduce that

α = 0, X(a) = aβ, scal = 2(X(β) − β2). (3.12)

In particular any integral curve η of X inU is a geodesic. By completeness of M , the curve η

can be extended to a complete geodesic. We claim that η is entirely contained in U . Indeed
the second equation (3.12) yields that

d

dt
log a(η(t)) = β(η(t)),

and hence

a(η(t)) = a(η(0))e
∫ t
0 β(η(ξ)) dξ .

The third equation in (3.12) says that X(β) = 1
2 scal + β2 > 0, so

a(η(t)) ≥ a(η(0))etβ(η(0)) > 0
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for t > 0. In particular a is bounded away from zero along η for positive time. Repeating
the argument for negative time yields that η is contained inU . By assumption scal ≥ 2δ2 for
some δ > 0, so X(β) ≥ δ2 + β2. After integration, we can write

arctan(δ−1β(η(t))) ≥ δt + arctan(δ−1β(η(0)))

for all t ∈ R. This is a contradiction, since the right-hand side is unbounded. Hence U = ∅,
which is to say C ≡ 0, and this implies that M splits.

3.3 The case � = −1

In this subsection, we prove Theorem 1.4.
We will first consider parts (a) and (c) of the statement. Note that the scalar curvature

is constant under the assumptions there. For each p ∈ M , consider the linear map Cp :
N−1|p → M(2, R). Since the scalar curvature is constant, Lemma 2.1 says that trCT =
0 and detCT = −1 for unit T ∈ N−1, so Cp is injective and its image lies in the 3-
dimensional subspace of traceless matrices. Moreover, Cp cannot be onto the subspace of
traceless matrices, as this subspace contains singular matrices. Therefore dimN−1|p < 3,
and hence n < 5.

We next rule out the case n = 4. By dimensional arguments the image of Cp meets
the subspace of symmetric endomorphisms of D p , for each p ∈ M . Take the trace of
equation (2.3) throughout, and use that trCT = 0 for all T ∈ N−1 and that the trace
commmutes with the covariant derivative, to obtain

tr(CSCT ) = 2 〈T , S〉
for all S, T ∈ N−1. Now we can find local orthonormal frames T1, T2 of N−1 and X , Y of
D such that CT1 and CT2 are respectively represented by the matrices

(
1 0
0 −1

)
and

(
0 b
1/b 0

)
,

where b is a nowhere zero locally defined smooth function on M . We refer again to equa-
tion (2.3) to write

∇T2CT1 = CT1CT2 + C∇T2T1
,

and identify the endomorphisms with their matrices to obtain

0 =
(

0 b
−1/b 0

)
+ 〈∇T2T1, T2〉

(
0 b
1/b 0

)
,

which clearly is impossible.
Now n = 3. Let T ∈ N−1, ||T || = 1.We already knowendomorphismswith theirmatrices

to obtainendomorphisms with their matrices to obtainendomorphisms with their matrices to
obtain that trCT = 0 and detCT = −1, so the eigenvalues of CT are ±1. Since C2

T = I ,
equation (2.4) implies that Cγ ′ is constant along a nullity geodesic γ with respect to any
parallel orthonormal frame of D := N⊥−1. Then we can write CT = ( −1 0

0 1

)
along T = γ ′

with respect to a parallel frame of unit vector fields X̃ , Ỹ ofD along γ . Note that this frame is
orthogonal at p if and only ifCTp is a symmetric endomorphism if and only ifD is integrable
at p.
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In any case we have a locally defined frame T , X̃ , Ỹ , where we put f := −〈X̃ , Ỹ 〉, and
we orthonormalize it to get

X = 1√
1 − f 2

(X̃ + f Ỹ ),

Y = Ỹ .

With respect to X , Y we have

CT =
(−1 0
2F 1

)
,

where we have set F := f /
√
1 − f 2. Note that f is constant along γ , so X , Y are parallel

along γ and T (F) = 0. Hence we can write the Levi-Civita connection as follows:

∇T T = ∇T X = ∇T Y = 0, ∇XT = X − 2FY , ∇Y T = −Y ,

∇X X = −T + αY , ∇Y Y = T + βX , ∇XY = 2FT − αX , ∇Y X = −βY ,
(3.13)

for some locally defined smooth functions α, β. The bracket relations follow:

[X , Y ] = 2FT − αX + βY , [T , X ] = −X + 2FY , [T , Y ] = Y . (3.14)

Next, the curvature relations

〈R(X , Y )X , Y 〉 = −KD,

where KD is the sectional curvature of the plane spanned by X , Y , and

〈R(X , Y )X , T 〉 = 〈R(T , Y )X , Y 〉 = 〈R(X , Y )Y , T 〉 = 0,

yield the equations

α = −βF,

T (β) = β,

Y (F) = −β(1 + F2),

X(β) − FY (β) = KD − 1.

(3.15)

With these equations at hand, we can finish the proofs of parts (a) and (c). In view of (3.14),
D is integrable on an open set U if and only if F vanishes identically on U . Assume this is
the case. Equations (3.15) then imply α = β = 0 and KD = 1. Now (3.14) reduces to

[X , Y ] = 0, [T , X ] = −X , [T , Y ] = Y .

In other words, we have a local orthonornal frame of vector fields whose Lie brackets have
constant coefficients in this frame. Owing to Lie’s third fundamental theorem, (see also [21,
(1.4)] or [45, Lem. 2.5]), U is locally isometric to a Lie group with left-invariant metric; in
this case, E(1, 1) = SO0(1, 1) � R

2. This proves part (a).
Assume now M is simply-connected and homogeneous as in (c). Then F is constant,

and the equations (3.15) say that, again, α = β = 0 and KD = 1. Lie’s third fundamental

theorem yields that M is isometric to E(1, 1) in case F = 0, and to ˜SL(2, R) in case F �= 0.
This proves (c).

Finally, we deal with (b). We assume M is complete and has finite volume. Fix a complete
unit speed nullity geodesic γ in the open set ofminimal (−1)-nullity�. If the scalar curvature
of M is bounded away from−n(n−1), then we apply Lemma 2.2 to deduce that the splitting
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tensor Cγ ′(t) = C(t) satisfies trC(t) = 0 and detC(t) = −1 for all t ∈ R, and the
argument follows as in the beginning of the proof to show that we must have n = 3. Then
we can construct the locally defined orthonormal frame T , X , Y as above, and we have
equations (3.15). Note that M has (−1)-nullity 1, so Lemma 2.3 says that div T = 0.

We follow an argument in [37]. Let γ be again a complete (−1)-nullity geodesic in �,
parameterized so that T = γ ′ along γ . The second equation in (3.15) implies that

β(γ (t)) = β(γ (0))et . (3.16)

Let D be a compact 2-disk transversal to γ at γ (0). By our assumption that the volume is
finite and the Poincaré recurrence theorem, γ meets D infinitely many times as t �→ ±∞.
Since β is bounded on D, equation (3.16) says that β vanishes identically along γ . Since γ

is any nullity geodesic in �, now β = 0 on �. The third equation in (3.15) gives Y (F) = 0
and we also have T (F) = 0. Finally, apply the second bracket relation in (3.14) to F to get
T X(F) = −X(F). The same argument using the Poincaré recurrence theorem implies that
X(F) = 0. Now β and F are constant on �. In particular the scalar curvature is constant on
the closure �̄, namely, equal to 2(2κ + KD) = −2. The complement M \ � is a closed set
consisting of isotropic points of M , namely, where all sectional curvatures are −1 and hence
the scalar curvature is−6. By connectedness of M ,� = M . Now β and F are constant on M
and this implies that the universal covering ofM is homogeneous, via Lie’s third fundamental
theorem. This completes the proof of Theorem 1.4.

4 Almost Abelian Lie groups

An almost Abelian Lie group G is a non-Abelian (real connected) Lie group whose Lie
algebra g has a codimension one Abelian ideal V (it is equivalent to require the existence
of a codimension one subalgebra [2]). Hence we can write its Lie algebra as a semidirect
product g = R�A V , where V is an Abelian ideal and the action of R on V is determined by
the adjoint action of a fixed generator ξ ∈ R, which we represent by an operator A ∈ gl(V ),
so that [ξ, X ] = AX for all X ∈ V . Note that G = R �eA V , G is unimodular if and only if
tr A = 0, and A �= 0 as G is non-Abelian.

First we compute the curvature of an almost Abelian Lie group G, equipped with a left-
invariant Riemannian metric that makes ξ unit, and ξ and V orthogonal. Koszul’s formula
for the Levi-Civita connection immediately yields:

∇ξ ξ = 0, ∇ξ X = Ask X , ∇X ξ = −Asy X , ∇XY = 〈Asy X , Y 〉ξ,

for all X , Y ∈ V , where A = Asy + Ask is the decomposition of A into its symmetric and
skew-symmetric components. This easily gives expressions for the curvature tensor and the
sectional curvatures as follows:

R(X , Y )Z = −〈AsyY , Z〉Asy X + 〈Asy X , Z〉AsyY ,

R(X , Y )ξ = 0,

R(ξ, X)Y = 〈([Ask, Asy] − (Asy)2)X , Y 〉ξ,

R(ξ, X)ξ = ([Asy, Ask] + (Asy)2)X ,

(4.17)

for X , Y , Z ∈ V . In particular, the sectional curvatures are given by:

K (ξ, X) = −||Asy X ||2 − 〈[Asy, Ask]X , X〉,
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and

K (X , Y ) = − det

(〈Asy X , X〉 〈Asy X , Y 〉
〈AsyY , X〉 〈AsyY , Y 〉

)
,

for all X , Y ∈ V .
Let X1, . . . , Xm be an orthonormal basis of V consisting of eigenvectors of Asy , with

corresponding eigenvalues λ1, . . . , λm . Now we can express the Ricci curvature as:

Ric(ξ, ξ) = −
m∑
j=1

λ2j , Ric(ξ, Xi ) = 0,

Ric(Xi , Xi ) = −λi

m∑
j=1

λ j , Ric(Xi , X j ) = (λi − λ j )〈Ask Xi , X j 〉 (i �= j).

Finally, the scalar curvature is

scal = −
m∑
i=1

λ2i −
(

m∑
i=1

λi

)2

.

Lemma 4.1 If G = R �eA V is not flat, then its 0-nullity distribution is the left-invariant
distribution defined by the subspace

ker Asy ∩ (Ask)−1(ker Asy). (4.18)

of V .

Proof We use the notation above and formulae (4.17). Suppose a0ξ + ∑m
i=1 ai Xi ∈ N 0 for

some a0, a1, . . . , am ∈ R. The nonflatness assumption implies that Asy is nonzero, so there
is an index j such that λ j �= 0. Now

0 = R(a0ξ +
m∑
i=1

ai Xi , X j )X j

= a0R(ξ, X j )X j +
∑
i �= j

ai R(Xi , X j )X j

= −a0λ
2
jξ − λ j

∑
i �= j

aiλi Xi .

We deduce that a0 = 0 (so that N 0 ⊂ V ), and ai = 0 for all i �= j with λi �= 0. If there
is k �= j with λk �= 0, then we repeat the above argument with k in place of j to arrive
at a j = 0. If, on the contrary, all i �= j have λi = 0, we use the following argument for
X = ∑

i ai Xi ∈ N 0:

0 = R(ξ, X)ξ

= Asy Ask X − Ask Asy X + (Asy)2X

= 〈Ask X , X j 〉λ j X j − a jλ j A
sk X j + a jλ

2
j X j .

Since Ask X j ⊥ X j , the second term gives that a j = 0 or Ask X j = 0. In the latter case,
the first term vanishes, and hence the last term gives again a j = 0. In any case a j = 0, so
N 0 ⊂ ker Asy . Finally, if X ∈ N 0 and Y ∈ V then

0 = 〈R(ξ, X)ξ, Y 〉 = 〈Ask X , AsyY 〉.
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Therefore Ask X ∈ (im Asy)⊥ = ker Asy , proving that N 0 is contained in (4.18). The con-
verse inclusion is clear from (4.17), and this finishes the proof. ��

We are now prepared to prove Theorem 1.3. Consider an almost Abelian group G =
R �eA V , where

A =

⎛
⎜⎜⎝
0 −b 0 −c
b 0 0 0
0 0 −a 0
c 0 0 a

⎞
⎟⎟⎠

with respect to a basis X1, . . . , X4 of V . Note that G is unimodular.
Take the left-invariantmetric onG obtained by declaring the basis ξ , X1, . . . , X4 orthonor-

mal. Choose the coefficients a, b, c of the matrix A to be all nonzero. Thanks to Lemma 4.1,
we immediately see that the nullity distribution is spanned by X2. Now G has 0-nullity 1.

SupposeG splits as a Riemannian product. Then the conullity splits accordingly. It follows
that either one of the factors is flat, or both have conullity 2. In the former case, one of the
factors coincides with the 0-nullity, but this contradicts the fact that the splitting tensor
CX2ξ = −(∇ξ X2)

h = −bX1 is nonzero. Therefore we must be in the latter case. The factors
are of 0-conullity 2, therefore they are semi-symmetric. We note that the left-translations of
G are isometries, and thus must preserve the factors. Now the factors are homogeneous; by
[39, Prop. 5.1], they must be symmetric, and hence G is symmetric, a contradiction. Hence
G is irreducible.

Finally, G has quotients of finite volume if, in addition, eA can be represented by a
matrix with integral coefficients in some basis of V , in view of the following result (see [18,
Cor. 6.4.3]; here it is worth mentioning that every finite volume quotient of a solvable Lie
group by a discrete subgroup is automatically compact, a result due to Mostow [28]).

Lemma 4.2 (Filipkiewicz’s criterion) Suppose G = R �eA V is unimodular and non-
nilpotent. Then there is a discrete subgroup � of G with �\G compact if and only if there
exists λ ∈ R, λ �= 0, such that eλA has a characteristic polynomial with integral coefficients.

In order to find A satisfying the condition of Lemma 4.2, consider the standard 4 × 4
matrix with two real eigenvalues and two complex conjugate ones:

B =

⎛
⎜⎜⎝

−γ 0 0 0
0 γ − 2α 0 0
0 0 α −β

0 0 β α

⎞
⎟⎟⎠ .

As claimed in [22] (see also [5, Prop. 3.7.2.5]), there exists α, β, γ ∈ R such that

eB =

⎛
⎜⎜⎝
e−γ 0 0 0
0 eγ−2α 0 0
0 0 eα cosβ −eα sin β

0 0 eα sin β eα cosβ

⎞
⎟⎟⎠

is conjugate to

C =

⎛
⎜⎜⎝
1 0 0 1
1 2 0 2
0 1 3 0
0 0 1 0

⎞
⎟⎟⎠ .
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The approximate values are

α ≈ 0.308333405, β ≈ 0.511773474, γ ≈ 1.861109547.

Now it suffices to find a, b, c ∈ R \ {0} such that A and B are conjugate. The eigenvalues of
B are pairwise distinct, so it is enough to know that the characteristic polynomials pA and
pB of A and B, resp., are equal.

We have

pA(x) = x4 + (−a2 + b2 + c2)x2 + ac2x − a2b2,

and

pB(x) = x4 + σ x2 + μx + ν,

where

σ = −2α2 + β2 − (α − γ )2, μ = 2α((α − γ )2 + β2),

ν = (α2 + β2)γ (2α − γ ).

Clearlyμ > 0 and ν < 0. It follows that we can solve a4 +σa2 −μa+ν = 0 for real a > 0.
Now a, b = √−ν/a, c = √

μ/a yields a matrix A such that pA = pB . This completes the
proof of Theorem 1.3.

5 Manifolds of (−1)-nullity 1

In this section we prove Theorem 1.5.
By Lemma 2.3, div T = 0 for any unit vector field T in the nullity N−1. It also follows

from the proof of that lemma thatm = n−1 is even and the eigenvalues ofCT are−1 and+1,
each with multiplicity m/2. Fix p ∈ M . Since CTp has real eigenvalues, it is triangularizable
over R, hence it is triangularizable in an orthonormal basis. Choose an orthonormal basis
of N⊥−1|p with respect to which the matrix of CTp is lower triangular. Let γ be a nullity
geodesic with γ ′(0) = Tp . Parallel translate that basis to an orthonormal frame along γ .
Equation (2.11) shows that C(t) = Cγ ′(t) is lower triangular in that frame, with eigenvalues
±1, each with multiplicity m/2, and off diagonal entries given by polynomials in et , e−t .
The assumption of finite volume together with the fact that T is divergence-free implies,
via the Poincaré Recurrence Theorem, that γ must come back arbitrarily close to p, and
infinitely often. We deduce that such off diagonal polynomials entries must be constant. Now
0 = C ′(t) = C(t)2 − I , thanks to (2.4). In particular C := C(t) = C(0) is conjugate
to a diagonal matrix with entries ±1, each repeated m/2 times. Since C is diagonalizable,
dim ker(C ± I ) = m/2, and so C has the block form

C =
(
Im/2 0
D −Im/2

)
. (5.19)

Let T , X1, . . . , Xm be a locally defined orthonormal frame of M , with respect to which
CT has the form (5.19), which is parallel along nullity geodesics. Then ∇T T = ∇T Xi = 0,
and ∇Xi X j = ∑m

k=1 �k
i j Xk + 〈CT Xi , X j 〉T for all i , j = 1, . . . ,m. We claim that all

“Christoffel symbols” �k
i j (i , j , k = 1, . . . ,m) vanish.
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In order to check the claim, we compute

R(T , Xm)Xi =
∑
k

(T (�k
mi ) + �k

mi )Xk

for i < m and

R(T , Xm)Xm =
∑
k

(T (�k
mm) + �k

mm)Xk − T .

Using that T ∈ N−1, we get T (�k
mi ) = −�k

mi . Poincaré recurrence now gives that �k
mi = 0

for i , k = 1, . . . ,m. Next, assume by induction that �k
i j = 0 for i = i0, . . . ,m, for some i0,

and for j , k = 1, . . . ,m. Since

[T , Xi0−1] = CT Xi0−1 = ±Xi0−1 + lin. comb. of Xi0 , . . . , Xm,

we get

R(T , Xi0−1)X j = ∇T∇Xi0−1X j ± ∇Xi0−1X j + lin. comb. of ∇Xi0
X j , . . . ,∇Xm X j︸ ︷︷ ︸

multiple of T

,

so

0 = 〈R(T , Xi0−1)X j , Xk〉 = T (�k
i0−1, j ) ± �k

i0−1, j ,

and we use Poincaré recurrence again to get �k
i0−1, j = 0. This proves that �k

i j = 0 for i , j ,
k = 1, . . . ,m; in particular, [Xi , X j ] can only have component in T , if any.

Let f be a locally defined smooth function on M representing an off diagonal entry of
CT . We already know that T ( f ) = 0. Now

T Xm( f ) = [T , Xm]( f ) = CT Xm( f ) = −Xm( f ),

so Xm( f ) = 0 by Poincaré recurrence. Suppose now, by induction, that Xm( f ) = · · · =
Xi0+1( f ) = 0 for some i0. Then

T Xi0( f ) = [T , Xi0 ]( f ) = CT Xi0( f )

= ±Xi0( f ) + (lin. comb. of Xi0+1, . . . , Xm)( f )︸ ︷︷ ︸
=0

. (5.20)

Therefore Xi0( f ) = 0, by Poincaré recurrence. It follows that Xi ( f ) = 0 for all i and
hence f is locally constant. This already implies that the real vector space spanned by the
locally defined frame T , X1, . . . , Xm is closed under commutators, and hence M is locally
isometric to a Lie group with a left-invariant metric, due to Lie’s Third Theorem.

We identify the Lie group. Note that, going along directions other than N−1, the frame
X1, . . . , Xm is defined up to a transformation

( P 0
0 Q

)
, where P ∈ O(m/2) (resp. Q ∈

O(m/2)) acts on the +1-eigenspace of CT (resp. −1-eigenspace of CT ). On one hand, since
we have shown the entries of CT to be locally constant, the matrix (5.19) has D constant. On
the other hand, (5.19) satisfies

(
P(t) 0
0 Q(t)

)(
I 0
D −I

) (
P(t) 0
0 Q(t)

)−1

=
(
I 0
D −I

)

for all smooth curves P(t), Q(t) ∈ SO(m/2), with P(0) = Q(0) = Im/2, along a smooth
curve c : (−ε, ε) → M with c(0) = p, c′(t) /∈ N−1|γ (t). Hence D = 0, as m/2 ≥ 2. This,
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together with the vanishing of the Christofell symbols �k
i j for i , j , k = 1, . . . ,m, means the

Lie group is G = R �eC R
m , where C =

(
Im/2 0
0 −Im/2

)
.

Since M is complete, its universal covering is isometric to G. Finally, we show that G
indeed admits quotients of finite volume, using Filipkiewicz’s criterion (Lemma 4.2). In fact

exp

((
log

3 + √
5

2

)
C

)
= 1

2

(
(3 + √

5)Im/2 0
0 (3 − √

5)Im/2

)

is conjugate to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1

. . .
. . .

3 −1

1 0

. . .
. . .

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This finishes the proof of Theorem 1.5.

6 Bracket-generation of the �-conullity distribution

Let M be a connected complete Riemannian manifold with nontrivial κ-nullity distribution
N κ of constant rank, for some fixed κ ≥ 0. In this section, we revisit some results related to
the following question: When can two points in M be joined by a piecewise smooth curve
always orthogonal to the κ-nullity distribution? An answer is given by Theorem 1.6, which
we now prove.

6.1 The case � > 0

This is part (a) of the theorem and the answer is easy. By Corollary 2.2, D = N⊥
κ is bracket

generating of step 2, and hence, owing to the Chow-Rashevskii theorem [27, Thm. 2.1.2],
any two points in M can be joined by a piecewise smooth curve which is tangent to D at
smooth points.

6.2 The case � = 0

Next we deal with part (b). We put D = N⊥
0 and recall the distributions Dr introduced

in (2.7). We also set Er = (Dr )⊥ for r ≥ 1.

Lemma 6.1 Let T ∈ E2, X ∈ D and Y ∈ T M. Then 〈∇Y T , X〉 = 0.

Proof Since T ⊥ D2, the calculation (2.2) says that CT is a symmetric endomorphism of D
and hence all of its eigenvalues are real. Now Corollary 2.1 implies that CT ≡ 0. Finally, we
decompose Y = Y h +Y v according to T M = D⊕N 0 and recall thatN 0 is totally geodesic
to obtain
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〈∇Y T , X〉 = −〈CT Y
h, X〉 + 〈∇Y vT , X〉 = 0,

as wished. ��
Lemma 6.2 Let T ∈ Er+1, Y ∈ Dr and X ∈ D, for some r ≥ 1. Then 〈∇XT , Y 〉 = 0.

Proof We compute

〈∇XT , Y 〉 = −〈T ,∇XY 〉
= −〈T ,∇XY 〉 − 〈∇Y T , X〉 (by Lemma6.1)

= 〈T , [Y , X ]〉
= 0 (since[Y , X ] ∈ Dr+1),

as desired. ��
For a point p ∈ M , consider the integers ni (p) = dimDi |p and note that the non-

decreasing sequence n1(p), n2(p), . . . obviously stabilizes, say at r = r(p). The growth
vector of D at p ∈ M is the integer list (n1(p), . . . , nr (p)). The distribution D is called
regular at p if the growth vector is locally constant at p. The subset Mreg of regular points
for D is open and dense, and consists precisely of the points of M where all the Di ’s are
genuine distributions. Since the growth vector is a lower semicontinuous function, Mreg in
particular contains the open set where the growth vector is maximal (with respect to the
lexicographic order starting at n1).

Let γ be a nullity geodesic. Since D is parallel along γ and the parallel transport along
γ is an isometry, we deduce that the growth vector is constant along γ . It follows that the
connected components of Mreg are foliated by the leaves of N 0. Fix such a component, say
U , with growth vector (n1, . . . , nr ).

Note that Enr �= 0 if and only ifD is not bracket-generating onU . By the argument above,
Enr is parallel along a nullity geodesic. Moreover Enr+1 = Enr so, owing to Lemma 6.2,
∇XT ∈ Enr for all X ∈ D and T ∈ Enr . We have shown that Enr is a parallel distribution
in M . Note that the leaves of Enr are isometric to a flat Euclidean space R

s for some s ≥ 0
(s = 0 corresponds to the case in which D is bracket-generating in U ). By the de Rham
decomposition theorem and the Chow-Rashevskii theorem [27, Thm. 2.1.2], and shrinkingU
if necessary,U splits as a Riemannian productU0×R

s , where s ≥ 0 (compare [23, Prop. 5.2
of Ch. IV]), and any two points of U0 × {0} can be joined by a piecewise smooth curve
in U0 × {0} tangent to D|U0×{0} at smooth points.

If M is homogeneous and simply-connected thenU = M . The irreducibility of M implies
s = 0. This proves (b) and finishes the proof of the theorem.
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